
Fuzzing Documentation
Release 0.3.2

Stefan Braun

Jun 10, 2018

Contents

1 Release Notes 3

2 Tutorial 5
2.1 Random testing . 5
2.2 Logging . 10
2.3 Singletons . 12

3 API Reference 13
3.1 Fuzzing . 13

4 License 15

5 Indices and tables 17

i

ii

Fuzzing Documentation, Release 0.3.2

Contents:

Contents 1

Fuzzing Documentation, Release 0.3.2

2 Contents

CHAPTER 1

Release Notes

Release 0.3.1

No functional changes. Only tested and released for Python 3.5.

Release 0.3.0

New features:

• Run multiple tests in parallel on multiple processors. Number of processors and processes is configurable.

• Test statistics of the processes are merged and printed.

API changes:

• FuzzExecutor.stats returns an instance of TestStatCounter, not a simple dict anymore.

You may want to look into TestStatCounter and Status. See also run_fuzzer.py for intended usage.

Release 0.2.3

• Data structure for run statistics improved.

• Tests can now be configured using a YAML file.

• Test runner script added for improved user experience :: run_fuzzer.py config.yaml

Reading the test runner script may help to get a clearer picture how to use the tool.

Release 0.2.3a1

Package structure simplified.

Release 0.2.2

Mainly cleanup.

• Test uses pure Python test app. See features/resources/testfuzz.py.

Release 0.2.1

• Class LoggerFactory. Logger factory for configuration of the Python logging framework.

• The fuzzer module uses logging.

3

Fuzzing Documentation, Release 0.3.2

• Singleton decorator behaves much nicer since using wrapt. See Graham Dumpleton’s talk on the workings of
wrapt.

Release 0.2.0

Improved fuzz testing.

• Class FuzzExecutor makes fuzz testing of applications taking data files easy.

Release 0.1.0

First small step.

• Basic functions for fuzz testing.

• Decorator to declare a class as Singleton.

4 Chapter 1. Release Notes

https://www.youtube.com/watch?v=W7Rv-km3ZuA&spfreload=10

CHAPTER 2

Tutorial

The following sections will show how to use the classes and functions of the package.

• Random testing

• Logging

• Singletons

2.1 Random testing

Systematic testing helps us to cover classes of equivalent test cases. Specifying those test classes largely reduces the
effort for testing without sacrificing test coverage.

One drawback of this approach is that we’re testing only what we expect to break. This may allow defects caused by
unexpected side effects or unexpected input data to pass the tests . . . and show up in production systems.

Random testing is an approach to increase the coverage of the domain of our software’s inputs by automatically
running large amounts of tests with randomized input data. This might be totally random ‘byte noise’, mostly valid
data provided by a carefully crafted generator, or anything in between.

Charlie Miller did some interesting work on fuzz testing. The function fuzzer() is essentially taken from Babysit-
ting an Army of Monkeys (see references below).

References:

• http://fuzzinginfo.files.wordpress.com/2012/05/cmiller-csw-2010.pdf

• https://cansecwest.com/csw08/csw08-miller.pdf

2.1.1 How to do random testing on your own?

Fuzz testing can be done on different levels:

• unit (e.g. function, class, module),

5

http://fuzzinginfo.files.wordpress.com/2012/05/cmiller-csw-2010.pdf
https://cansecwest.com/csw08/csw08-miller.pdf

Fuzzing Documentation, Release 0.3.2

• integration (components built from units),

• system (e.g. application).

In each case you need to provide a source for test data, call your SUT, and check the result. Put this into a loop and
start fuzzing.

This is already good for robustness tests. In most cases you also want a kind of statistics and a documentation of the
test cases resulting in an error.

2.1.2 Generating test data

In general random testing can be done with any kind of input data (I guess ;-). The code found in fuzzing.fuzzer.
fuzzer() is working on a binary buffer. It is a copy of Charlie Miller’s code mentioned above.

The binary buffer may contain something like a pdf, an image, a presentation and so on. It also works fine
for normal text, covering ASCII texts, HTML, XML, JSON and other text based formats. fuzzing.fuzzer.
fuzz_string() is a wrapper simplifying such use cases a bit.

2.1.3 Example of a simple generator:

Example

import fuzzing
seed = "This could be the content of a huge text file."
number_of_fuzzed_variants_to_generate = 10
fuzz_factor = 7
fuzzed_data = fuzzing.fuzz_string(seed, number_of_fuzzed_variants_to_generate, fuzz_
→˓factor)
print(fuzzed_data)

Of course you can also create one fuzzed variant at a time and feed it directly into the SUT.

2.1.4 Calling the SUT with the test data

How to call the SUT depends obviously on its type. A Python function can be called directly with the created data. It
might make sense to enclose the call into a try / except block to catch errors. It is also easy to check the result value
for failure.

Testing software written in other languages works in the same way. You may want to write the fuzz generator in the
target language, or just create the test data with Python and put it into a file for use by the target system.

Applications reading files can be tested creating fuzzed files in the same manner as described above: Read a valid seed
file into a buffer, fuzz it and write it back to a new file. Then run the application in a separate process for each fuzzed
file. In this case it is not that easy to gather useful information about the success or failure of the run. At least crashes
are easily recognized.

2.1.5 The oracle - or: How to evaluate the test result?

The function evaluating the result of a test run is called oracle. That’s fine because the result is not always clear and
understandable ;-).

Running an application in a separate process as described above let us quite easily detect crashes. If we need more
detailed information there is no general way to get at it. One of the most general information is a crash dump of the
SUT.

6 Chapter 2. Tutorial

Fuzzing Documentation, Release 0.3.2

Detecting issues not leading to a crash depends largely on the application we are looking at. If it creates some
accessible output, like a processed file or a log file, we may be able to write parsers that enable us to look for failures.

2.1.6 Complete example:

The following sample code runs 100 tests against the applications listed in apps_under_test. Test data is gener-
ated using a simple fuzzer on a set of files defines in file_list.

After finishing the test runs a statistic is printed.

Note that num_tests should be much bigger for real testing. But it makes sense to start with a small number to get
the test harness working. Then increase this number to a couple of millions or so.

Some of the code found in the fuzzer module is inlined for easier comprehension.

import math
import random
import subprocess
import time
import os.path
from tempfile import mkstemp
from collections import Counter

Files to use as initial input seed.
file_list = ["./data/pycse.pdf", "./data/PyOPC.pdf", "./data/003_overview.pdf",

"./data/Clean-Code-V2.2.pdf", "./data/GraphDatabases.pdf",
"./data/Intro_to_Linear_Algebra.pdf", "./data/zipser-1988.pdf",
"./data/QR-denkenswert.JPG"]

List of applications to test.
apps_under_test = ["/Applications/Adobe Reader 9/Adobe Reader.app/Contents/MacOS/
→˓AdobeReader",

"/Applications/PDFpen 6.app/Contents/MacOS/PDFpen 6",
"/Applications/Preview.app/Contents/MacOS/Preview",
]

fuzz_factor = 50 # 250
num_tests = 100

End of configuration

def fuzzer():
"""Fuzzing apps."""
stat_counter = Counter()
for cnt in range(num_tests):

file_choice = random.choice(file_list)
app = random.choice(apps_under_test)
app_name = app.split('/')[-1]
file_name = file_choice.split('/')[-1]

buf = bytearray(open(os.path.abspath(file_choice), 'rb').read())

Charlie Miller's fuzzer code:
num_writes = random.randrange(math.ceil((float(len(buf)) / fuzz_factor))) + 1

for _ in range(num_writes):
(continues on next page)

2.1. Random testing 7

Fuzzing Documentation, Release 0.3.2

(continued from previous page)

r_byte = random.randrange(256)
rn = random.randrange(len(buf))
buf[rn] = r_byte

end of Charlie Miller's code

fd, fuzz_output = mkstemp()
open(fuzz_output, 'wb').write(buf)

process = subprocess.Popen([app, fuzz_output])

time.sleep(1)
crashed = process.poll()
if crashed:

logger.error("Process crashed ({} <- {})".format(app, file_choice))
stat_counter[(app_name, 'failed')] += 1

else:
process.terminate()
stat_counter[(app_name, 'succeeded')] += 1

return stat_counter

if __name__ == '__main__':
stats = fuzzer()
print(stats)

2.1.7 Using FuzzExecutor

Fuzz testing applications using files can be used often because it is quite generic. Therefore it makes sense to encap-
sulate this functionality and make it easy to apply.

The example above can be written much faster using the class FuzzExecutor:

from fuzzing.fuzzer import FuzzExecutor

Files to use as initial input seed.
file_list = ["./features/data/t1.pdf", "./features/data/t3.pdf", "./features/data/t2.
→˓jpg"]

List of applications to test.
apps_under_test = ["/Applications/Adobe Reader 9/Adobe Reader.app/Contents/MacOS/
→˓AdobeReader",

"/Applications/PDFpen 6.app/Contents/MacOS/PDFpen 6",
"/Applications/Preview.app/Contents/MacOS/Preview",
]

number_of_runs = 13

def test():
fuzz_executor = FuzzExecutor(apps_under_test, file_list)
fuzz_executor.run_test(number_of_runs)
return fuzz_executor.stats

def main():
stats = test()
print(stats)

8 Chapter 2. Tutorial

Fuzzing Documentation, Release 0.3.2

2.1.8 Getting test statistics

The property FuzzExecutor.stat is an instance of TestStatCounter. It provides the number of successful
and failed runs for each application.

To combine the statistics of multiple test runs TestStatCounter implements __add__:

// Run multiple tests yielding a set stats = set(c1, c2, c3) of stat counters
...
// Then merge these counters to get a complete statistics of your test runs.
// This operation does not modify c1 to c3.
combined_stats = TestStatCounter(set())
for stat in stats:

combined_stats += stat

Status is an enum class providing the supported values for test status:

@enum.unique
class Status(enum.Enum):

"""Status values for test runs."""
FAILED = 0
SUCCESS = 1

2.1.9 Running tests without coding

When running different sets of tests writing a script for each configuration is tedious. It would be nice to just write a
configuration and feed it to a generic test runner.

run_fuzzer.py now reads a test configuration written using YAML notation. Please note that each process will
execute runs tests. Therefore the number of executed tests is the product of runs and processes.

version: 1
seed_files: ['requirements.txt', 'README.rst']
applications: ['python & features/resources/testfuzz.py -p 0.3',

'/Applications/Adobe Reader 9/Adobe Reader.app/Contents/MacOS/
→˓AdobeReader']
runs: 4
processors: 3
processes: 8

If you want to run a couple of tests, just provide those configuration files and execute run_fuzzer.py. For example:

$ run_fuzzer.py test_config_one_processor.yaml
$ run_fuzzer.py test_config_4_processors.yaml

Each call to run_fuzzer.py will execute the tests as configured. It creates a ProcessPoolExecutor with
pool size defined by the number of specified processors. The number of processes is (kind of) independent of the
number processors; if there are more processes than processors, a new process will be started as soon as a processor is
available.

If for example 2 processors and 5 processes are specified, not more than 2 processes will run in parallel at each point
in time.

After executing all tests run_fuzzer.py merges the results of all processes and prints statistics like that:

2.1. Random testing 9

Fuzzing Documentation, Release 0.3.2

__
Test Results:
__
Tests run/succeeded/failed: 32 / 25 / 7
AdobeReader

FAILED: 0
SUCCESS: 14

python
FAILED: 7
SUCCESS: 11

__

2.2 Logging

The Python standard library provides good logging capabilities with the module logging. Requirements on logging
depend on the application and may change during the life cycle. Therefore a logging system must be flexible. The
logging module is highly configurable and extendable.

Class fuzzing.LoggerFactory reads a YAML configuration file and initializes the logging system. It is just a
thin layer on top of logging abstracting from the details of initialization. Loggers can be used as usual; the use of
LoggerFactory is transparent for the loggers.

2.2.1 Configuration file

LoggerFactory expects to get a YAML file containing the configuration of the loggers. To deploy your configura-
tion put it into a folder of your package, e.g.:

<my_package>
<my_sources>
<resources>

log_config.yaml
<tests>
<doc>

Then add it to your MANIFEST.in so that it will be packaged with your code:

include <my_package>/resources

The documentation of the Python standard library describes how to write such a file: https://docs.python.org/3.4/
library/logging.config.html.

Example:

version: 1
formatters:

concise:
format: '%(asctime)s - %(levelname)s - %(message)s'

detailed:
format: '%(asctime)s - %(levelname)s - %(filename)s:%(lineno)3d - %(funcName)s()

→˓:: %(message)s'
thread_info:
format: '%(asctime)s - %(levelname)s - %(filename)s:%(lineno)3d - %(funcName)s() -

→˓ %(thread)d:%(threadName)s :: %(message)s'
(continues on next page)

10 Chapter 2. Tutorial

https://docs.python.org/3.4/library/logging.config.html
https://docs.python.org/3.4/library/logging.config.html

Fuzzing Documentation, Release 0.3.2

(continued from previous page)

handlers:
console:
class: logging.StreamHandler
level: WARNING
formatter: concise
stream: ext://sys.stdout

file:
class: logging.handlers.RotatingFileHandler
filename: 'fuzzer.log'
maxBytes: 100000
backupCount: 3
level: DEBUG
formatter: detailed

loggers:
fuzzing:
level: DEBUG
handlers: [console, file]
propagate: no

fuzzing.fuzzing:
level: INFO
handlers: [console, file]
propagate: no

fuzzing.fuzzing.FuzzExecutor:
level: INFO
handlers: [file, console]
propagate: no

root:
level: WARNING
handlers: [console]

2.2.2 Initialization

The logging system must be initialized before the first use. So put something like the following into the startup
code of your application:

from gp_tools import LoggerFactory

def my_main():
lf = LoggerFactory(package_name='my_package', config_file='resources/log_config.

→˓yaml')
lf.initialize()

Now you can log as you’re used to it:

import logging

'my_logger' is the name as used in the configuration.
logger = logging.getLogger('my_logger')

logger.info('Happy Logging!')

That’s it :-)

2.2. Logging 11

Fuzzing Documentation, Release 0.3.2

2.3 Singletons

Singleton classes are characterized by the fact that there will be never more than a single instance. This may be useful
for classes handling physical devices or any other stateful objects, e.g. caches, that need to be handled in a consistent
way.

Singletons should be used with care, because they may lead to high coupling if used in many places. So they may be
comfortable first, but become a nightmare later on when extending or maintaining an application.

Creating a singleton class using the singleton decorator is simple:

from gp_decorators.singleton import singleton

@singleton
class SomeClass(object):

"""A singleton class."""
<your code>

12 Chapter 2. Tutorial

CHAPTER 3

API Reference

3.1 Fuzzing

13

Fuzzing Documentation, Release 0.3.2

14 Chapter 3. API Reference

CHAPTER 4

License

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright (c) 2014,2015 Stefan Braun

15

Fuzzing Documentation, Release 0.3.2

16 Chapter 4. License

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

17

Fuzzing Documentation, Release 0.3.2

18 Chapter 5. Indices and tables

Index

C
Charlie Miller, 5, 6

R
Random testing, 5

19

	Release Notes
	Tutorial
	Random testing
	Logging
	Singletons

	API Reference
	Fuzzing

	License
	Indices and tables

